Informational Meetings for New-Proposed JIPs

- **Date:** Wednesday, March 16, 2011
- **Place:** Meeting Room 327 in Hilton Americas- Houston (1600 Lamar, Houston, TX)
- **Time:**
 - 4:30 PM to 5:30 PM – CCS/EOR JIP
 - 5:30 PM to 6:30 PM – TLC Inhibition JIP

1. **Corrosion in CO₂ Sequestration and Enhanced Oil Recovery Joint Industry Project (CCS / EOR JIP)**

 The Institute for Corrosion and Multiphase Technology at Ohio University will be initiating a new Joint Industry Project dedicated exclusively to **Corrosion in CO₂ Sequestration and Enhanced Oil Recovery Systems (CCS/EOR JIP)**. Based on the knowledge accumulated in the past several years related to the Carbon Capture and Storage (CCS) process and in response to interest from potential industry partners, ICMT decided to initiate a new program in the form of a Joint Industry Project open to any company interested in corrosion issues relating to CCS and EOR utilizing high pressure CO₂. The new CCS/EOR JIP is scheduled to start in January 2012.

 The overall objective of the CCS/EOR JIP is to identify and quantify the key issues which impact on corrosion of materials specifically relating to the integrity of structures for Carbon Capture and Storage (CCS) and CO₂ Enhanced Oil Recovery (EOR).

 During the meeting we will provide more detailed information about the proposed CCS/EOR JIP, its goals, scope, and anticipated developments. For further information, please contact Yoon-Seok Choi (choiy@ohio.edu).

2. **Top of the Line Corrosion Inhibition Joint Industry Project (TLC Inhibition JIP)**

 The Institute for Corrosion and Multiphase Technology will launch a new research activity in early 2012 on the topic of **Top of the Line Corrosion Inhibition (TLC Inhibition JIP)**. Building on its extensive laboratory and field experience in sweet (CO₂) and sour (H₂S) TLC, the ICMT will develop this new project around the following objective: to investigate the efficiency of non-standard methods in inhibiting the corrosion at the top of the line in both sour and sweet environments. Strongly sour environments will also be a primary focus in this new JIP, as the mechanisms of corrosion are still not well understood. These non-standard techniques will include the use of volatile chemicals and the study of droplet transport, as well as innovative methods involving different carriers (such as the foam or gel), using the unique facilities of the ICMT (glass cell, autoclave, flow loops). In the interest of enhancing the scope of the proposed research, the ICMT intends to explore a collaborative approach that will draw additional support not only from other academic experts in the field but also from the chemical inhibitor industry. The project will be presented and discussed in further detail on Wednesday, March 16 at 5:30 pm. Please contact Marc Singer (singer@ohio.edu) for more information.